Название: Моделирование рисковых ситуации в экономике и бизнесе

Жанр: Экономика

Рейтинг:

Просмотров: 893


6.2.1. выбор функций решения

Для всех состояний природы не существует одной наилучшей функции решения. От статистика требуется применение таких методов, которые дают оптимальные функции решения в более узком диапазоне.

Для этого необходимо использовать критерии оптимальности.

Статистик в статистической игре (W, D, R) или в расширенных статистических играх стремится к выигрышу, т. е. к определению наилучшей функции решения, при которой риск R(Q, d) был бы минимальным. Но это не просто, так как для каждого состояния природы Q имеется своя лучшая функция.

Пусть у нас имеются две различные функции решения d1 и  (рис. 6.2).

Рис. 6.2. Сравнение двух функций решения

Можно выделить область, где функция d1 будет лучшей, - в диапазоне состояний природы Q1< QQ2.

Функция d Î D называется допустимой, если в множестве D* нет никакой другой функции решения d0, которая была бы лучшей d для всех QÎW. Данная функция длякаждого QÎW должна удовлетворять неравенству R(Q,d0) £ R(Q,d). Таким образом, допустимая функция решения не будет доминирующей стратегией статистика в статистической игре.

Рассмотрение только допустимых функций существенно уменьшит множество D* до множества допустимых функций решения.

Отметим, что байесовские функции решения входят в класс допустимых функций.

Определение. Функция решения d0ÎD* называется байесовской относительно априорного распределения xÎX состояний природы Q, если она минимизирует байесовский риск r(x, d) на множестве D*.

Таким образом, r(x, d)  = r(x, d). Приведем формулу Байеса. Прежде чем ее написать, обратимся к теореме о полной вероятности [2, разд. 2.5, 2.6].

Теорема. Если событие А может наступить только при условии появления одного из событий В1, В2, ...,Bn, образующих полную группу несовместных событий, то вероятность события А равна сумме произведений вероятностей каждого из событий В1, В2, ...,Bn на соответствующую условную вероятность события А:

                                                               

где P(Bi) - вероятность события Bi;

Р(А|Вi) - условная вероятность события А в случае, если событие Вi уже произошло.

Формула Байеса используется тогда, когда событие А появляется совместно с каким-либо из полной группы несовместных событий В1, В2, ..., Bn . Событие А произошло, и требуется произвести количественную переоценку вероятностей событий В1, В2, ..., Bn. При этом известны вероятности Р(В1), Р(В2),..., Р(Bn) до опыта (априорные). Требуется определить вероятности после опыта (апостериорные).

Апостериорные вероятности представляют собой условные вероятности Р(В1|А), Р(В2|А) ,..., Р(Вn|А). Вероятность совместного наступления событий А с любым из этих событий Вj по теореме умножения равна:

Эту формулу можно переписать исходя из формулы полной вероятности:

Задача 6.1. Собирается партия исправных изделий с трех предприятий. Первый завод поставляет 60 \%, второй - 30 \%, третий - 10 \% изделий. В1, В2, В3 - события, соответствующие тому, что изделия изготовлены на первом, втором и третьем предприятиях.

Вероятность исправной работы изделий первого предприятия равна 0,98, второго - 0,99, третьего - 0,96.

Определить вероятность того, что в собранную партию исправных изделий попали соответственно изделия с первого, второго и третьего предприятий.

Введем обозначения:

А - событие, заключающееся в том, что изделие исправно;

Р(А) - полная вероятность того, что изделие исправно;

Р(В1|А), Р(В2|А), Р(В3|А) - условные вероятности того, что исправное изделие изготовлено соответственно на первом, втором и третьем предприятиях;

Р(A|В1), Р(A|В2), Р(A|В3) - условные вероятности того, что изделие, изготовленное соответственно на первом, втором и третьем предприятиях, исправно;

Р(В1), Р(В2), Р(В3) - вероятности того, что изделие изготовлено соответственно на первом, втором и третьем предприятиях.

Известно: Р(А|В1) = 0,98; Р(А|В2) = 0,99; Р(А|В3) = 0,96; Р(В1) = 0,60; Р(В2) = 0,30; Р(В3) = 0,10.

Требуется определить Р(А); Р(В1|А); Р(В2|А); Р(В3|А).

Решение. 1. Определим полную вероятность того, что изделия, прибывшие с разных предприятии, исправны:

                               

2. Вычислим условные вероятности того, что в партию исправных попали изделия с первого, второго и третьего предприятии соответственно:

                               

3. Проверим: Р(В1|А) + Р(В2|А) + Р(В3|А) = 0,599 + 0,303 + + 0,098 = 1.

Вывод. По формуле Байеса количественная переоценка доли предприятии в партии исправных изделии составляет: первое предприятие имеет 59,9 \%; второе - 30,3 \%; третье - 9,8 \%.

Остановимся на некоторых нестандартных принципах принятия решений.

Принцип Байеса - Лапласа. Данный принцип отступает СП-условий полной неопределенности. В нем предполагается, что возможные состояния природы могут достигаться с вероятностями Р1, P2,..., Рn при условии, что Р1+ P2+ ,...,+ Рn =1. Байес в 1763 г. предложил считать равными вероятности отдельных состояний природы.

В 1812 г. Лаплас обобщил этот принцип на случай различных вероятностей, но тем не менее говорят и о байесовском подходе. Если напомнить, что байесовские функции решения входят в класс допустимых функций, то будет понятно их широкое использование в практике принятия решений (см. гл. 3).

Принцип Гурвица. Этот принцип является упрощенным вариантом принципа Байеса - Лапласа. Если известны вероятности отдельных состояний, то берут среднее арифметическое результатов при наилучшем решении. Иногда, если существует возможность определить вес наихудшего и наилучшего решений, то используют их взвешенную среднюю арифметическую.

Проиллюстрируем применение данного принципа на примере строительства предприятий при четырех разных состояниях природы и наличии четырех разных типов предприятий.

Задача 6.2. Имеются определенные средства на возведение предприятий. Необходимо наиболее эффективно использовать капиталовложения с учетом климатических условий, подъездных путей, расходов по перевозкам и т.д. Сочетание этих факторов по влиянию на эффективность капиталовложений можно разбить на четыре состояния природы B1, В2, В3, В4. Типы предприятий обозначим А1, А2, А3, А4. Эффективность строительства определяется как процент прироста дохода по отношению к сумме капитальных вложений. Информацию, отражающую постановку задачи, представим в табл. 6.2.

Таблица 6.2

 

Варианты решений

1. Решение по принципу стратегических игр, по принципу максимина:  = 4 . Нужно строить предприятие А3.

Изменим условия задачи и предположим, что в табл. 6.2 отражены затраты на строительство предприятий, тогда выбор типа предприятий следует осуществить по принципу минимакса:  =9. Нужно строить предприятие А1 или А4.

2. Решение по принципу Гурвица.

Если известны все вероятности, определяющие состояния природы, сделаем выбор с помощью среднего арифметического лучшего и худшего результатов.

Согласно табл. 6.2 это будет рекомендация строить предприятие А2, обеспечивающее максимальную среднюю эффективность Ф =  = 8.

3. Применим принцип Байеса при равных вероятностях состояний природы Р(В1)=Р(В2)=Р(В3)=Р(В4)=1/4. Определим рентабельность, соответствующую решению А1, т. е. М1:

Далее определяем М2, М3, и М4.

Выводы. Предполагая, что все вероятности состояний природы равны, следует строить предприятие А3, так как M3 = 7,5 = max (M1, M2, M3, M4). Отметим, что принцип Байеса-Лапласа имеет смысл применять, если возможно оценить вероятности отдельных состояний природы. При этом необходимо, чтобы решения также повторялись многократно.

Когда события повторяются многократно, действует закон больших чисел, согласно которому достигается максимальный средний результат.

При единичных решениях принцип Байеса - Лапласа не следует применять.

Принцип Гурвица фактически является упрощением байесовских оценок. Гурвиц допускает, в частности, при отсутствии информации о вероятностях возникновения отдельных состояний природы брать среднее арифметическое значение результатов наилучшего и наихудшего решений.


Оцените книгу: 1 2 3 4 5